12. Consider the following set of preference lists:

	Number of Voters (8)					
Rank	2	2	1	1	1	
First	A	E	A	D.	L	
Second	3 B	В	D	B	C	a
Third	C	D	C	C	E	1
Fourth	D	C	B	D	D	1
Fifth	OE	A	E	A	AB	1

Calculate the winner using

- (a) plurality voting.
- (b) the Borda count.
- (c) the Hare system.
- (d) sequential pairwise voting with the agenda B, D, C, A, E.
- 13. Consider the following set of preference lists:

	Number of Voters (5)						
Rank	1	1	1	1	1		
First	A	В	C	D	E		
Second	B	C	В	C	D		
Third	\mathcal{E}	A	E	A	C		
Fourth	D	D	D	E	A		
Fifth	OC	E	A	B	B		

Calculate the winner using

- (a) plurality voting.
- (b) the Borda count.
- (c) the Hare system.
- (d) sequential pairwise voting with the agenda A, B, C, D, E.
- 14. Consider the following set of preference lists:

Rank	Number of Voters (7)							
	2	2	1	1	1			
First	OA	В	A	C	D			
Second	D	D	В	В	В			
Second Third	C	A	D	D	A			
Fourth	B	C	C	A	C			

Calculate the winner using

- (a) plurality voting.
- (b) the Borda count.
- (c) the Hare system.
 (d) sequential pairwise voting with the agenda B, D, C, A.

15. Consider the following set of preference lists:

		Numb	per of Voi	ters (7)	14 (0)
Rank	2	2	1	1	1
First	4 C	E	C	D	1
Second	\mathcal{E}	В	A	E	E
Third Fourth	D	D	D	A	C
Fifth	A	C	E	C	D
T TICH	B	A	В	В	В

Calculate the winner using

- (a) plurality voting.
- (b) the Borda count.
- (c) the Hare system.
- (d) sequential pairwise voting with the agenda A, B, C, D, E.
- 16. Consider the following set of preference lists:

Rank	Number of Voters (7)							
	1	1	1	1	1	1	1	
First	9C	D	C	В	. E	D	C	
Second	A	A	E	D	D	E	A	
Third	E	E	D	A	A	A	E	
Fourth	В	C	A	E	C	В	В	
Fifth	D	В	В	C	В	C	D	

Calculate the winner using

- (a) plurality voting.
- (b) the Borda count.
- (c) sequential pairwise voting with the agenda A, B, C, D, E.
- (d) the Hare system.
- 17. An interesting variant of the Hare system was proposed by the psychologist Clyde Coombs. It operates exactly as does the Hare system, but instead of deleting alternatives with the fewest first-place votes, it deletes those with the most last-place votes.
- (a) Use the Coombs procedure to find the winner if the ballots are as in Exercise 16.
- (b) Show that for two voters and three alternatives, it is possible to have ballots that result in one candidate winning if the Coombs procedure is used and a tie between the other two if the Hare system is used.
- ◆ 18. In a few sentences, explain why Condorcet's rule satisfies
- (a) the Pareto condition.
- (b) monotonicity.