Algebra 2 Matrices Review

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Find $7 A+6 B$.

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & -3 \\
5 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
-2 & 1 \\
5 & 4 \\
0 & -7
\end{array}\right]
$$

Evaluate the determinant of the matrix.

\qquad 2. $\left[\begin{array}{ccc}-5 & -5 & 4 \\ -5 & 4 & -1 \\ 0 & 3 & -1\end{array}\right]$
\qquad 3. A matrix contains 48 elements. Which of the following cannot equal the number of rows of the matrix? Use Cramer's Rule to solve the system.
\qquad 4. $\left\{\begin{array}{l}1.5 x-0.5 y=-3.5 \\ 1.5 x+1.5 y=-7.5\end{array}\right.$

Identify the given matrix element.
\qquad 5. $\begin{aligned} & a_{2,3} \\ & {\left[\begin{array}{cccc}-1 & 2 & 5 & 0 \\ -5 & 0 & -6 & 7 \\ 9 & 9 & 2 & -1 \\ 8 & -5 & 0 & -7\end{array}\right] }\end{aligned}$
\qquad 6. $a_{2,1}$
$\left[\begin{array}{cccc}-1 & 2 & 5 & 3 \\ -5 & 0 & 4 & 7 \\ 9 & 6 & -3 & -1 \\ 8 & -5 & -2 & 1\end{array}\right]$

Solve the system.
7. $\left\{\begin{array}{c}-3 x+10 y=3 \\ x-3 y=-3\end{array}\right.$

- 8. $\left\{\begin{array}{c}4 x+2 y-z=6 \\ 2 x+3 y-2 z=5 \\ -4 x+4 y+2 z=0\end{array}\right.$

Find the product.
-
9. $\left[\begin{array}{cc}-7 & 6 \\ 1 & 6\end{array}\right]\left[\begin{array}{cc}-4 & 1 \\ -4 & 3\end{array}\right]$
_10. $\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]\left[\begin{array}{l}-1 \\ -5 \\ -1\end{array}\right]$
_11. $-4\left[\begin{array}{ccc}7 & -4 & 0 \\ -3 & 0 & 5 \\ 6 & 2 & 1\end{array}\right]$

Use matrices A, B, and C. Find the sum or difference if you can.
$A=\left[\begin{array}{ll}-5 & 4 \\ -8 & 2\end{array}\right] \quad B=\left[\begin{array}{ccc}-2 & 7 & -3 \\ 1 & -6 & 0\end{array}\right] \quad C=\left[\begin{array}{ccc}5 & 3 & -1 \\ -3 & 0 & 6\end{array}\right]$
12. $C+A$
13. $C+B$
14. State the dimensions of the matrix. Identify the indicated element.

$$
A=\left[\begin{array}{cc}
-9 & 1 \\
-7 & 5 \\
-5 & 8
\end{array}\right], a_{2,1}
$$

Solve the matrix equation.

_15. $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right] X=\left[\begin{array}{ll}6 & 6 \\ 2 & 4\end{array}\right]$
-16. $X-4\left[\begin{array}{cc}2 & -8 \\ -4 & 2\end{array}\right]=\left[\begin{array}{ll}4 & -6 \\ 2 & -8\end{array}\right]$
_17. $X+\left[\begin{array}{lll}2 & 5 & 8 \\ 2 & 3 & 0\end{array}\right]=\left[\begin{array}{ccc}6 & -1 & -7 \\ -5 & 2 & 7\end{array}\right]$

Find the values of the variables.
_18. $\left[\begin{array}{cc}-14 & -w^{2} \\ 3 f & 3\end{array}\right]=\left[\begin{array}{cc}2 k & -81 \\ -3 & 3\end{array}\right]$
_19. $\left[\begin{array}{cc}-6-t & 0 \\ 8 & -5\end{array}\right]=\left[\begin{array}{cc}-5 & 0 \\ 8 & -3 y-2\end{array}\right]$

Evaluate the determinant.

20. $\left|\begin{array}{cc}-10 & 10 \\ 5 & -7\end{array}\right|$

Find the sum or difference.

- 21. $\left[\begin{array}{ccc}0 & -1 & 7 \\ 0 & 6 & 2\end{array}\right]+\left[\begin{array}{ccc}-2 & 0 & -2 \\ -3 & 5 & -1\end{array}\right]$
_ 22. $\left[\begin{array}{ccc}7 & 2 & 0 \\ -5 & 9 & 9\end{array}\right]-\left[\begin{array}{ccc}-1 & 3 & 8 \\ 3 & 4 & 7\end{array}\right]$

23. Suppose A and B are 2×1 matrices. Which of the following are the dimensions of the matrix $A+B$?

Algebra 2 Matrices Review

Answer Section

MULTIPLE CHOICE

1. ANS: D PTS: 1 DIF: L2 REF: 4-3 Matrix MultiplicationOBJ: 4-3.1 Multiplying a Matrix by a Scalar STA: MS AII 7dTOP: 4-3 Example 2 KEY: scalar multiplication \mid matrix subtraction \mid matrix
2. ANS: C PTS: 1 DIF: L2REF: 4-6 3×3 Matrices, Determinants, and InversesOBJ: 4-6.1 Evaluating Determinants of 3×3 MatricesSTA: MS AII 7b
TOP: 4-6 Example 1 KEY: determinant $\mid 3 \times 3$ matrix \mid matrix
3. ANS: A PTS: 1 DIF: L4 REF: 4-1 Organizing Data Into MatricesOBJ: 4-1.1 Identifying MatricesSTA: MS AII 7a
KEY: matrix | dimensions of a matrix | matrix element
4. ANS: D PTS: 1 DIF: L3
REF: 4-8 Augmented Matrices and SystemsOBJ: 4-8.1 Solving Systems Using Cramer's Rule STA: MS AII 2aTOP: 4-8 Example 1KEY: Cramer's Rule \mid systems and matrices $\mid 2 \times 2$ matrix
5. ANS: D PTS: 1 DIF: L2 REF: 4-1 Organizing Data Into MatricesOBJ: 4-1.1 Identifying MatricesSTA: MS AII 7a TOP: 4-1 Example 2
KEY: matrix | matrix element
6. ANS: D PTS: 1 DIF: L2
REF: 4-1 Organizing Data Into MatricesOBJ: 4-1.1 Identifying MatricesSTA: MS AII 7a TOP: 4-1 Example 2KEY: matrix | matrix element
7. ANS: C PTS: 1 DIF: L2 REF: 4-7 Inverse Matrices and SystemsOBJ: 4-7.1 Solving Systems of Equations Using Inverse MatricesSTA: MS AII 2a TOP: 4-7 Example 2KEY: systems and matrices $\mid 2 \times 2$ matrix \mid matrix equation
8. ANS: A PTS: 1 DIF: L2REF: 4-8 Augmented Matrices and SystemsOBJ: 4-8.1 Solving Systems Using Cramer's Rule STA: MS AII 2aTOP: 4-8 Example 2
9. ANS: D PTS: 1 DIF: L2 REF: 4-3 Matrix MultiplicationKEY: systems and matrices $\mid 3 \times 3$ matrix | Cramer's RuleOBJ: 4-3.2 Multiplying MatricesSTA: MS AII 7d TOP: 4-3 Example 4KEY: matrix multiplication | matrix
10. ANS: B PTS: 1
OBJ: 4-3.2 Multiplying Matrices
DIF: L3 REF: 4-3 Matrix Multiplication
STA: MS AII 7d TOP: 4-3 Example 4
KEY: matrix multiplication | matrix
11. ANS: B PTS: 1 DIF: L2
REF: 4-3 Matrix Multiplication
OBJ: 4-3.1 Multiplying a Matrix by a ScalarKEY: scalar | scalar multiplication | matrix
12. ANS: D PTS: 1 DIF: L3
REF: 4-2 Adding and Subtracting MatricesOBJ: 4-2.1 Adding and Subtracting MatricesSTA: MS AII 7c $\|$ MS AII 7d
TOP: 4-2 Example 1
KEY: matrix addition | dimensions of a matrix | matrix subtraction
13. ANS: B PTS: 1 DIF: L2
REF: 4-2 Adding and Subtracting Matrices

OBJ: 4-2.1 Adding and Subtracting Matrices
STA: MS AII 7c | MS AII 7d
TOP: 4-2 Example 1
KEY: matrix subtraction | dimensions of a matrix | matrix addition
14. ANS: D PTS: 1 DIF: L3 REF: 4-1 Organizing Data Into Matrices

OBJ: 4-1.1 Identifying Matrices STA: MS AII 7a TOP: 4-1 Example 1
KEY: matrix | dimensions of a matrix | matrix element
15. ANS: B PTS: 1 DIF: L2

REF: 4-5 2×2 Matrices, Determinants, and Inverses
OBJ: 4-5.2 Using Inverse Matrices to Solve Equations STA: MS AII 7b
TOP: 4-5 Example 4
KEY: inverse matrices | matrix | multiplicative inverse of a matrix
16. ANS: D PTS: 1 DIF: L2 REF: 4-3 Matrix Multiplication

OBJ: 4-3.1 Multiplying a Matrix by a Scalar STA: MS AII 7d
TOP: 4-3 Example $3 \quad$ KEY: scalar | scalar multiplication | matrix | matrix equation
17. ANS: D PTS: 1 DIF: L2

REF: 4-2 Adding and Subtracting Matrices OBJ: 4-2.2 Solving Matrix Equations
STA: MS AII 7c | MS AII 7d TOP: 4-2 Example 4
KEY: matrix equation
18. ANS: D PTS: 1 DIF: L4

REF: 4-2 Adding and Subtracting Matrices OBJ: 4-2.2 Solving Matrix Equations
STA: MS AII 7c | MS AII 7d TOP: 4-2 Example 6
KEY: matrix | matrix equation | matrix element
19. ANS: D PTS: 1 DIF: L2

REF: 4-2 Adding and Subtracting Matrices OBJ: 4-2.2 Solving Matrix Equations
STA: MS AII 7c | MS AII 7d TOP: 4-2 Example 6
KEY: matrix | matrix equation | matrix element
20. ANS: B PTS: 1 DIF: L3

REF: 4-5 2×2 Matrices, Determinants, and Inverses
OBJ: 4-5.1 Evaluating Determinants of 2×2 Matrices STA: MS AII 7b
KEY: determinant $\mid 2 \times 2$ matrix | matrix
21. ANS: D PTS: 1 DIF: L2

REF: 4-2 Adding and Subtracting Matrices
OBJ: 4-2.1 Adding and Subtracting Matrices
STA: MS AII 7c | MS AII 7d
TOP: 4-2 Example 2 KEY: matrix addition | matrix
22. ANS: B PTS: 1 DIF: L2

REF: 4-2 Adding and Subtracting Matrices
OBJ: 4-2.1 Adding and Subtracting Matrices
STA: MS AII 7c | MS AII 7d
TOP: 4-2 Example 3 KEY: matrix subtraction | matrix
23. ANS: A PTS: 1 DIF: L3

REF: 4-2 Adding and Subtracting Matrices
OBJ: 4-2.1 Adding and Subtracting Matrices
STA: MS AII 7c $\|$ MS AII 7d
KEY: matrix addition | matrix

